
1

Overview

Course: CS 152: Programming Languages
Course Level: Upper-level undergraduate

Course
Description:

Comprehensive introduction to the principal features and overall design of both
traditional and modern programming languages, including syntax, formal semantics,
abstraction mechanisms, modularity, type systems, naming, polymorphism, closures,
continuations, and concurrency. Provides the intellectual tools needed to design,
evaluate, choose, and use programming languages.1

Module Topic: Managing Risks in Software Design
Module Author: Michael Pope

Semesters Taught: Spring 2023
Tags: Risk [phil], Stakeholders [phil], Harm [phil], Software verification and validation [CS],

Design [CS], Programming languages [CS]

Module
Overview:

The goal of this module is to consider whether, and
to what extent, software engineers have a
responsibility to mathematically prove that their
software is error-free. The module focuses on
managing risks of error before any harm has
occurred, relying on a distinction between ex post
and ex ante risks. To assess risks that arise from
trade-offs in efficiency, security, economy, and
safety, the module introduces a stewardship model
for software design. The model emphasizes the
importance of stakeholder input and oversight. The
module concludes with a sorting exercise in which
students consider whether formal methods are
required for a given software (e.g., mobile payment
software, presentation software, wearable fitness
technology, online dating website, etc.).

Connection to
Course Material:

This course includes an examination of formal
methods for verifying that code is error-free. This
module relates the utility of such methods to trade-
offs between risk of harm and economic viability.

This module discusses two
processes for checking that a
software is ready for deployment.
The first is validation, which
confirms that the software fulfills
design requirements. Students
discuss how these requirements
are generated and can be sensitive
to stakeholder interests. The
second process is verification,
which formally shows that
software is designed correctly (i.e.,
without error). This latter process
is very costly (in time and money),
introducing questions about
economically viable development
and potential harms.

1 Harvard course catalog link. Course website link.

https://courses.my.harvard.edu/psp/courses/EMPLOYEE/EMPL/h/?tab=HU_CLASS_SEARCH&SearchReqJSON=%7B%22ExcludeBracketed%22%3Atrue%2C%22SaveRecent%22%3Atrue%2C%22Facets%22%3A%5B%5D%2C%22PageNumber%22%3A1%2C%22SortOrder%22%3A%5B%22SCORE%22%5D%2C%22TopN%22%3A%22%22%2C%22PageSize%22%3A%22%22%2C%22SearchText%22%3A%22CS%20152%22%7D
https://groups.seas.harvard.edu/courses/cs152/2023sp/

2

Goals
Module Goals: 1. Familiarize students with stakeholder analysis as

a tractable framework for identifying ethical
requirements on software performance.

2. Provide students with opportunities to practice
devising requirements for applications.

3. Discuss the importance of validation and
verification for meeting ethical and performance
requirements.

Key Philosophical
Questions:

1. What responsibility do software engineers have to
prove their software is error-free?
2. How do ex post and ex ante risks differ and relate
to software deployment?
3. How can attention to stakeholder interests in
programming and software design promote goods
and prevent harms?

Q1: The overarching goal of this
module is to promote more
responsible design choices by
considering trade-offs around
deployment in conditions of
scarcity and uncertainty.

Q2 and Q3: It is often
straightforward to identify
potential risks when actual harms
occur. This module focuses on the
harder case of assessing risks of
potential harm. Through
sensitivity to stakeholder
interests, software engineers can
better formulate system
requirements and determine
when formal verification is
required. However, this is not
always straightforward, since
stakeholders’ interests can differ
and conflict.

Materials
Key Philosophical

Concepts:
● Ex ante and ex post risk
● Harm
● Stakeholder values and interests

The distinction between risks after
some harm occurs (ex post) and
risks before any harms occur (ex
ante) helps to narrow the module’s
focus to risks that arise in software
development prior to deployment.

When assessing risks in software
development, the module explores
advantages and limitations of
incorporating stakeholder values
and interests. In particular, student
discussions invite reflection on
ways that sensitivity to
stakeholders’ interests can (1)

3

enhance design requirements
utilized to validate software and (2)
justify the cost of formal
verification.

Assigned
Readings:

● Jonathan Jacky (1989), “Programmed for
Disaster: Software Errors That Imperil Lives,”
The Sciences.

● Barbara Fried (2018), “Facing Up to Risk”

Jacky’s article succinctly introduces
the Therac-25 case study as well as
relevant considerations for
assessing potential coding errors.

Fried’s article discusses the
distinction between ex post and ex
ante risk, as well as challenges for
strategies that aim to avoid
aggregation in managing potential
risks.

Implementation
Class Agenda: 1) Introduction to risk in design: two case studies

a) Case Study 1: Ford Pinto (ex post risk)
b) Case Study 2: Therac-25 (ex ante risk)

2) Responsible Stewardship: Stakeholders, rights,
and aggregate harms

3) Validation and design requirements
4) Verification and weighing competing concerns

i) Case Study 3: Tesla Full Self-Driving
System

5) Small-group sorting exercise and final debrief

Sample Class
Activity:

Having distinguished types of risk and introduced
ways of integrating stakeholder interests into design
requirements and tolerances for risk of error, the
module concludes with a small-group sorting
exercise. In the small groups, students determine
whether a given software requires the use of costly
formal methods. Examples include tax filing
software, presentation software (e.g., PowerPoint),
game apps for children ages 3+, online dating
platforms, mobile payment services (e.g., Venmo),
home security alarm system, wearable fitness
technology, among other items. In addition to
determining whether formal verification is required,
students formulate reasons that justify meeting such
a high threshold, especially in connection with
potential harm to stakeholders. A debrief follows the
exercise, wherein students from different groups
share and discuss the rationale for their results.

Determining the appropriate level
of risk tolerance is a matter of
practical discernment. This exercise
provides students with an
opportunity to put the module’s
content into practice.

Module
Assignment:

Within a homework subsection, students are asked
to describe approaches to managing risks in
deploying software, especially prior to any harms

The questions are designed to
achieve two goals. First, the
opening questions gauge student

https://nyaspubs.onlinelibrary.wiley.com/doi/10.1002/j.2326-1951.1989.tb02178.x
https://nyaspubs.onlinelibrary.wiley.com/doi/10.1002/j.2326-1951.1989.tb02178.x
https://academic.oup.com/jla/article/doi/10.1093/jla/laz003/5549883

4

occurring. Then, supposing that stakeholder
interests are relevant to system validation and
verification, a set of open-response questions invites
students to discuss additional considerations that
would help them strike a balance between total risk
aversion and reckless deployment.

understanding of the module
material. Second, the open-
response questions invite students
to deeper reflection on responsible
software design and deployment.

Lessons Learned: Student engagement and feedback for this module
was positive. A potential source of difficulty in
delivering this module is that it abstracts from the
logical and mathematical content of the course to
focus on practical applications of that content. To
serve this goal, it is important to ensure that there is
sufficient time for the sorting activity, as well as
student participation throughout the module.

