
1

Repository Entry
Embedded EthiCS @ Harvard Teaching Lab

Licensed CC-BY 4.0 International

Overview
Course: CS 153 Compilers

Course Level: Upper-level undergraduate
Course

Description:
Implementation of efficient interpreters and compilers for programming languages.
Associated algorithms and pragmatic issues. Emphasizes practical applications including
those outside of programming languages proper. Also shows relationships to
programming-language theory and design. Participants build a working compiler including
lexical analysis, parsing, type checking, code generation, and register allocation. Exposure
to run-time issues and optimization.

Module Topic: Free Software: Freedoms and Responsibilities
Module Author: Trystan S. Goetze

Semesters Taught: Fall 2021–22
Tags: free software [cs], open-source software [cs], licensing [cs], rights and freedoms [phil],

responsibility (duty) [phil]

Module
Overview:

In this module, we consider the question of whether
the freedoms protected by free or open-source
software come with any ethical responsibilities. After
an introduction to the history of free software,
students learn about the four freedoms protected by
free software licenses, such as the GNU General
Public License (GPL). We then consider some of the
differences between free, open-source, and
proprietary software, and why you might choose one
licensing scheme over another. We then raise a
philosophical question: do freedoms come with
responsibilities? In particular, this is framed as an
issue of giving back to the community or institution
that safeguards those freedoms, so that they can
continue to be preserved. Using an analogy with the
Tragedy of the Commons, we explore several
arguments for and against the idea that users of free
or open-source software have an ethical obligation to
contribute to those software projects. We also
consider whether other institutions, such as big tech
corporations or governments, could do the job
instead.

Students continue thinking through these issues by
discussing a realistic case study that asks them to
imagine a dialogue between a software developer
and her boss over whether to release a new compiler
backend as open-source or to keep it as a trade
secret. In the follow-up assignment, students
continue to think through these issues by writing a
short piece on whether the government should levy a
software tax to fund free or open-source projects, or,

2

whether the purpose of a piece of software matters
when choosing the licensing scheme one publishes it
under.

Connection to
Course Material:

The connection to the course material is made in a
few places explicitly, but implicit throughout the
lesson is that many popular compilers are entirely or
partially free or open-source. In addition, the lecture
raises the question of whether anyone should be
allowed to own something as fundamental to
computing infrastructure as a compiler – but,
because compilers are dependent on proprietary
hardware on the backend, a conclusion that
compilers should be free software may quickly
become an argument that all software should be
free, which is a much more controversial stance. The
case study also engages with the course material by
imagining a developer who creates a new backend
for a compiler to use in creating software for medical
devices. One of the assignment questions (on the
purpose of the software) may also bring in compilers
as one function software may serve that could be
relevant in deciding whether to release it as free or
open-source.

The topic chosen for this iteration
of the module takes inspiration
from a subset of the content for
the last iteration, developed by
Meica Magnani for Fall 2019–20
[repository entry missing]. In that
version, there is much more
lecture content, which is
organized around the question of
whether maintainers of free or
open-source software ought to be
funded. The case study in
Magnani’s iteration was the
HeartBleed bug in OpenSSL, an
open-source secure
communications software library.
HeartBleed was a serious security
vulnerability that was not
discovered, until it had been
exploited by hackers, because the
OpenSSL team was overworked
and underfunded.

The decision to focus on
responsibilities that may follow
from the freedoms of free and
open-source software is inspired
by Magnani’s use of the Tragedy
of the Commons in her lecture.
The move to this focus is to draw
out an ethical issue that directly
impacts compiler users, as many
compilers are free or open-source.
The narrower focus also enables
more structured discussion time.

Goals
Module Goals: 1. Understand the origins and motivations of free and

open-source software.
2. Know the differences between free, open-source,
and proprietary software.
3. Understand the freedoms protected by free
software.
4. Be familiar with and critically engage with
arguments for and against the notion that the
freedoms protected by free or open-source software
come with ethical responsibilities to contribute to

Finding ethical issues connected to
compilers isn’t easy! We decided
to go via the ethics of free
software, since (1) free/open-
source software is an important
topic that isn’t discussed in other
modules, and (2) many popular
compilers are free or open-source
software.

3

those projects.

Key Philosophical
Questions:

1. Do freedoms come with ethical responsibilities
(duties, obligations)?
2. On whom does the responsibility of maintaining
shared community resources fall?
3. How do we decide between different value sets,
such as the business interests of a company vs. the
ethical good the company could do?

These questions follow from a
more general philosophical
reflection on freedoms and
responsibilities in society, inspired
by an argument made by Mary
Ann Glendon in her book Rights
Talk. The third question arose
organically through discussion
with the students, and wasn’t
explicitly discussed in the lecture
or readings.

Materials
Key Philosophical

Concepts:
● Freedoms / Rights
● Responsibilities / Duties
● Different domains of values (ethical, business,

legal)

Free/open-source software is
designed to preserve several
freedoms of computer
programmers and software users
to use the software as they please.
These freedoms are akin to rights,
and also stand in contrast to
traditional approaches to
protecting intellectual property
rights.

Responsibilities, in the sense of
duties or obligations, are a
fundamental ethical concept. In
this context, the question we asked
was, are there distinctive
responsibilities that arise from
particular freedoms? In the case of
society, arguably we have
responsibilities to contribute to
maintaining a society that protects
our rights. In the case of free/open-
source software, arguably we have
responsibilities to contribute to
maintaining free/open-source
software that we have availed
ourselves of.

The different domains of values
arise in the context of actually
deciding how best to fulfill the
responsibilities one may have
regarding free/open-source
software. There are legal duties
one has if one decides to
incorporate some free/open-

4

source code into one’s public
projects. The business-focused
interests of one’s employer may
conflict with ethical goods involved
with contributing more to a
free/open-source project.

Assigned
Readings:

● Richard Stallman, The GNU Manifesto,
https://www.gnu.org/gnu/manifesto.en.html

● Optional reading: Trystan Goetze, “An IP Cheat
Sheet”

The Stallman reading is a classical
essay in the free software
movement, in which Stallman
makes his case for free software in
general, and the GNU project (an
ongoing effort to create an
operating system and set of
applications and tools released
under a free software license) in
particular.

The supplemental handout was
provided to give students a bit of
background on the different terms
and concepts used when discussing
intellectual property, and to
reinforce the distinctions between
free, open-source, and proprietary
software.

Implementation
Class Agenda: 1. Introduction

2. Origins of Free Software
3. Freedoms of Free Software
4. Distinctions between free, open-source, and

proprietary software
5. Do freedoms come with responsibilities?
6. Application to free and open-source software
7. Discussion of the case study
8. Wrap-up and assignment instructions

A typical module structure keeps
the lecture short (20–30 minutes)
and devotes the remainder of the
time to class discussion. This allows
students to refresh and add to
their knowledge of the material
before diving into higher-level
learning activities, and leaves
plenty of time to structure the
discussion with crafted case studies
and questions. A shorter lecture is
also easier for students to pay
attention to all the way through.

Sample Class
Activity:

Song Li is a senior developer for Physicker, a
healthcare technology company. Her boss, Mavis
Sloane, has asked Song to use mainly open-source
tools so that the company can save on costs. Song
selects an open-source compiler that works well
with the languages Physicker’s development pipeline
prefers.

After a 5-minute introduction from
the professor and a 25-minute
lecture from the Embedded EthiCS
TA, the next 40 minutes were spent
discussing the following case study.
Students took 2 minutes to think
about the questions on their own,
then 20 minutes in small groups of
3 or 4, then 3 minutes to enter

5

Song soon finds that some of the hardware used by
a few of Physicker’s clients isn’t very well supported
by the compiler she chose, and there aren’t good
open-source alternatives with a frontend that
supports their preferred languages. So, she spends
some time developing a new backend for the
compiler.

Sloane is impressed, and wants to keep the new
backend as a proprietary trade secret. Song, on the
other hand, wants to release her work under the
same open-source license as the original compiler.

1. What could Song argue when she presents
her case to Sloane?

2. What counterarguments might Sloane

make in response? How could Song reply?

their responses on an online
classroom response tool (Padlet),
followed by 15 minutes of large
group discussion. The module
concluded with 5 minutes to wrap
up and introduce the follow-up
assignment, and for any remaining
questions.

Module
Assignment:

In the style of a blog post (250–300 words), write an
answer to one of the following prompts:

Option 1: Should the government levy a tax on
proprietary software, and distribute the
funds to support free and open-source software?
Why or why not?

Option 2: Does the purpose of a piece of software
(e.g. medical, accounting, software development)
matter when considering whether to release it
under a free or open-source license? Why or why
not?

“Blog post style” is to set students
at ease – i.e., it’s not a formal
essay.

Providing options for written
assignments is always good
practice.

Students were told to refer to the
Stallman reading, and were
encouraged to search for other
sources as well.

A rubric was provided to help
students understand how they
would be evaluated.

Students had one week to
complete the assignment.

Grading was done by students of
their peers' submissions. Students
had 2 weeks to complete the peer
review.

Lessons Learned: Students listened attentively to the lecture segment.
They were engaged during the discussion, and raised
many issues that hadn’t been explicitly discussed in
the lecture (e.g. power dynamics between employee
and boss, business values vs. ethical values).

I used a website called Padlet to capture their
thoughts from the discussion, which was effective in
giving us a fall-back resource for continuing the

Students were interested to learn
about the differences between
licensing schemes (proprietary,
free, open source, open source but
closed development, etc.).
Additional modules on free/open-
source software might be of
interest to them.

6

discussion when students were no longer raising
their hands. The Padlet was filled with far more
notes than we could possibly take up in class.

No one group was unanimous in thinking that the
issues in the case study were easy to solve.

Pedagogical insights:

1. The students who attended were
remarkably engaged. This may be an effect
of the course being upper-division.

2. Attendance was good, but probably less
than 50% of registrants. This may be an
effect of class attendance being explicitly
optional for the majority of class sessions.

3. Students didn’t seem to need/want much
time to think individually on the case study
before talking in groups.

4. Concerns about business values (e.g.
profitability, reputation, legal risk) seemed
to be well-engrained in the students, and
made it sometimes challenging to shift to a
focus on ethical values.

