
1

CS 152 Repository Entry
Embedded EthiCS @ Harvard Teaching Lab

Overview

Course: CS 152: Programming Languages
Course Level: Upper-level undergraduate

Course
Description:

“This course is an introduction to the theory, design, and implementation of programming
languages. Topics covered in this course include: formal semantics of programming
languages (operational, axiomatic, denotational, and translational), type systems, higher-
order functions and lambda calculus, laziness, continuations, dynamic types, monads,
objects, modules, concurrency, and communication.”1

Module Topic: Designing Usable Programming Languages
Module Author: Eliza Wells

Semesters Taught: Spring 2021-22
Tags: programming languages [CS], justice [phil], egalitarianism [phil]

Module
Overview:

This module focuses on how easy programming
languages are to learn and use. In particular, students
are introduced to the idea that programming
language usability can be a problem of justice. The
module introduces an egalitarian framework to help
students see that morally irrelevant factors (e.g.
vision impairment or not being a native English
speaker) impact whether or not some populations
are able to access the goods provided by computer
science. The module discusses different elements of
programming languages, such as documentation and
intuitive design, that can impact programming
language usability and asks students to think through
ways that they can design programming languages so
that morally irrelevant factors don’t impact usability.

Connection to
Course Material:

Students in this course learn about the formal
foundations of programming languages. They are
taught about some values that good programming
languages realize, such as memory-safety, and ways
that they can both test and design for those values.
This module considers another value that a good
programming language should realize: usability. It
encourages students to think about the people who
use programming languages, and which people are
able to sufficiently take advantage of the technically
important features students learn about in the
course.

The material in this course is very
technical and mathematical.
Rather than engage in detail with
concepts learned in the course,
this module’s approach is to zoom
out from course material and ask
students to think about
programming languages in their
social context.

Goals
Module Goals: 1. Familiarize students with the philosophical concept

of egalitarianism as a way of thinking about justice.

1 https://groups.seas.harvard.edu/courses/cs152/2022sp/

2

2. Explore how programming language usability is a
justice issue.
3. Practice thinking through different ways in which
students can design programming languages for
usability.

Key Philosophical
Questions:

1. Is programming language usability a justice issue?
2. What goods do individuals have access to through
computer science?
3. What morally irrelevant traits impact individuals’
access to those goods?
4. What responsibility do computer scientists have to
make programming languages usable?

This module argues that the
answer to question #1 is yes. By
thinking through the first three
questions, students are prepared
to see that the answer to the final
question is that computer
scientists have a responsibility to
ensure where possible that
morally irrelevant traits don’t
impact usability.

Materials
Key Philosophical

Concepts:
● Justice
● Egalitarianism
● Morally irrelevant traits

The module focuses on how
morally irrelevant traits can impact
whether or not some people are
able to use different programming
languages. Egalitarianism
(understood as the claim that,
because all people have equal
moral standing, different
treatment on the basis of morally
irrelevant traits is unjust) helps
students to see why this is morally
problematic.

Assigned
Readings:

● Selections from Ryan Long’s article on
Egalitarianism from the Internet Encyclopedia of
Philosophy2

This article introduces the basic
claims of egalitarianism and
discusses different kinds of goods
that should be distributed equally
under an egalitarian framework
– welfare, resources, capabilities,
etc. As well as introducing them to
the key philosophical topic, this
reading prepared students to think
about a variety of goods that might
be at stake in programming
language usability.

Implementation
Class Agenda: 1. Overview.

2. Class discussion of the various goods to which
being a computer scientist provides access.

2 https://iep.utm.edu/egalitarianism/

3

3. Egalitarianism as a way of thinking about how
those goods should be distributed.

4. Programming language usability as one case
where the goods of computer science are
distributed unequally.

5. Different ways in which programming languages
can be more or less usable.

6. Thinking through usability using case studies of
blind and low-vision programmers and non-
native English speakers.

Sample Class
Activity:

In small groups, students are asked to discuss:
1. What goods are at stake?
2. What factors limit access to those goods?
3. Are those factors morally relevant?

They are then presented with a case study of non-
native English speakers who have difficulty using
programming languages and asked:

4. What can we do about it?

This activity is an opportunity for
students to apply the concepts
they’ve learned to the particular
question of programming language
usability. When encouraged,
students were able to come up
with a long list of factors that might
limit access to these goods and
discuss the nuances of whether
those factors (e.g. motivation to
learn programming) should be
considered morally relevant.

Module
Assignment:

Students are asked to respond to the following
question on a class thread:
Choose a programming language with which you are
familiar. Which features of this language make it
usable? For whom? Is there a way in which it could
be made more usable (e.g. better documentation,
more intuitive design, etc.)?

This assignment asks students to
take the abstract lessons of the
module and apply them concretely
to a language they have experience
with. In their responses, students
were able to bring out how a
variety of technical features impact
usability. Few of them, however,
engaged in much detail with an
egalitarian perspective on which
populations were less able to use
the programming language they
discussed. A future version of this
question could highlight that
dimension more explicitly.

Lessons Learned: 1. Students were engaged with the content of the
module and very willing to discuss how big-picture
social factors (e.g. access to education,
socioeconomic status, values in the community in
which one is raised) impacted usability. In the course
of the discussion, it became clear that designing
programming languages to be more usable is a very
small change in a complex system of injustice.
Future versions of this module could do more to
situate programming language usability within that
bigger system.
2. Future versions of this module could do more to
highlight the different justice issues brought out by
a) not being able to use any programming language
versus b) not being able to use a particular
programming language.

4

3. One of the difficult questions of egalitarianism is
“What counts as a morally irrelevant trait?” Students
were able to bring out interesting edge cases, like
motivation to learn a programming language, that
may or may not be justice issues. Future modules
could lean into this complexity.
4. This module did not have time to discuss the
question of how computer scientists can concretely
realize their responsibility to make programming
languages usable, and what burdens they ought to
take on in order to achieve that. Students were
interested in this question.

