Repository Entry Template Embedded EthiCS @ Harvard Teaching Lab

	Overview					
Course:	CS 50: Introduction to Computer Science					
Course Level:	Introductory					
Course	"Introduction to the intellectual enterprises of comput	er science and the art of				
Description:	programming. This course teaches students how to thi	nk algorithmically and solve				
	problems efficiently. Topics include abstraction, algorit	hms, data structures, encapsulation,				
	resource management, security, software engineering,	and web programming. Languages				
	include C, Python, and SQL plus HTML, CSS, and JavaSc	ript. Problem sets inspired by the				
	arts, humanities, social sciences, and sciences. Course	culminates in a final project.				
	Designed for concentrators and non-concentrators alik	e, with or without prior				
	the overarching goals of this course are to inspire students	ants to explore unfamiliar waters				
	without fear of failure create an intensive shared exp	erience accessible to all students				
	and build community among students."					
Module Topic:	Cultivating Moral Imagination with Value Sensitive Des	ign				
Module Author:	William Cochran	-				
Semesters Taught:	Spring 2022					
Tags:	Design [CS], stakeholders [both], direct and indirect sta	keholders [phil], value [phil], moral				
	imagination [phil], value sensitive design [phil]					
Module	The main goal of this module was to prepare students	For more information about these				
Overview:	to reflect on the ethics of their final projects. To that	mini-modules, see the tabs below.				
	end, it introduced students to Value Sensitive Design					
	as a framework for reflecting on the impact of their					
	introduced to Value Sensitive Design through a short					
	lecture coupled with a toy example involving the					
	deployment of new emoii. Then, students practiced					
	applying this framework to two final projects from the					
	previous semester's CS50 class. In small groups,					
	students watched video presentations of these					
	previous projects and then used whiteboards around					
	the room to identify these projects' stakeholders					
	(both direct and indirect), their values, and the impact					
	these projects could have on stakeholders as they					
	scale up. The module also included an overview of the					
	various mini-modules that had taken place in prior weeks of the course					
Connection to	Students in CS50 complete a final project that tasks	This topic was chosen in				
Course Material:	students with implementing the technical skills they	consultation with the professor				
	have gained during the semester. This module (as well (David Malan) and preceptor					
	as several mini-modules which took place in prior	(Carter Zenke). They had been				
	classes) prepared students to engage with a section of	looking for a way to integrate this				
	their final project Design Document where they	ethical reflection into students'				
	answered questions about the technical and ethical final projects for a while.					
	decisions they made when developing their projects.					

¹ <u>https://cs50.harvard.edu/college/2022/spring/syllabus/</u>

	Goals	
Module Goals:	1. Help students develop their capacity for moral	One of the goals of CS50 is to
	imagination, especially when thinking about the	empower students with new
	broader impacts of their technical work.	technical abilities that they can
	2. Prepare students to reflect on the ethical decisions	deploy in a wide variety of settings
	they will make in the development of their final	beyond their time in the course.
	nrojects	The ethics lessons in this
	3. Reinforce and solidify the general themes about	module—as well as in the
	morally responsible computing already touched on in	mini modulos throughout this
	noving responsible computing aready touched on in	mini-modules throughout this
	previous ethics mini-modules (laught in weeks 0, 2,	semester—sought to supplement
	5, and 7).	these technical abilities with an
		ethics toolkit that could help them
		deploy their newly developed
		technical skills responsibly.
Key Philosophical	1. Do computer scientists have a responsibility to	The mini-modules that took place
Questions:	consider the moral and social impacts of their work?	in previous weeks sought to
	2. At what point(s) do ethical values factor into the	establish an affirmative answer to
	design process?	question 1, setting the stage for
	3. How can moral imagination help computer	students to think about how to
	scientists think about the broader impacts of their	discharge this responsibility
	work?	(questions $2 + 3$)
		190000002 . 0/

	Materials	
Key Philosophical	 Value sensitive design 	Introducing students to the concept
Concepts:	 Stakeholders: direct and indirect 	of both direct and indirect
	 Moral responsibility 	stakeholders helps students
	 Moral imagination 	develop moral imagination by bringing into view the people that are potentially impacted by their technical design choices.
Assigned Readings:	• None	As with other classes in CS50, there was no assigned reading for this module; instead, the normal practice was to have students watch a video lecture recorded in the corresponding week of the previous Fall. In the week that this ethics module ran, students watched a lecture on emoji and representation (Week 10).

		Implementation	
Class Agenda:	1.	Overview of the ethics mini-modules taught in	At the beginning of (2), I also used a
		prior weeks.	comparison to developing a new
	2.	Introduction to Value Sensitive Design as a way	building to help students visualize
		to cultivate moral imagination and assess the	the way in which developing a new

moral and social impacts of students' final projects.

- 3. Model applying the framework on an example involving the deployment of new emoji (from the Fall 2021 CS50 lecture, Week 10).
- 4. Small group activity: practice applying the framework on previous CS50 final projects.
- 5. Wrap up with class-wide debrief on small group work.

Sample Class Activity: For the active learning portion of the module, students were put into small groups and tasked with applying the value sensitive design framework to two previous final projects from the most recent CS50 class (Fall 2021). After watching one of the videos, students wrote their responses on whiteboards around the classroom, identifying direct and indirect stakeholders, their values, and the likely impact on stakeholders and their values as the project scales up. Students then repeated the same process on another previous final project. Finally, there was a class-wide debrief where students discussed their in-group work.

Module Assignment: The assignment connected with this module was integrated into the "Design Document" for students' final projects. In addition to responding to questions about the technical decisions students made (such as "What design challenge(s) did you run into while completing your project? How did you choose to address them and why?"), students were prompted to reflect on their ethical decisions as well. They were asked the following set of questions:

- What motivated you to complete this project?
 What features did you want to create and why?
- Who are the intended users of your project? What do they want, need, or value? (You should consider your project's users to be those who interact *directly* with your project, as well as those who might interact with it *indirectly*, through others' use of your project.)
- How does your project's impact on users change as the project scales up? You might choose one of the following questions to reflect on:

program needs to be sensitive to the (moral) landscape into which it is being built.

Scaffolding the activity in this way—first seeing the instructor apply the framework with a toy example in class, then applying it in small groups—prepared students to eventually apply the same procedure on their own when working on their final projects.

It should also be noted that the two past student projects used in this activity were chosen from among those posted on CS50's website. Prior to having their videos uploaded, students agree to having their videos posted and made publicly available.

The hope is that by repeating this process multiple times with the appropriate scaffolding—in class, in small groups, on their own for their final projects—students will be able to conduct similar ethical analyses of the work they do even beyond their time in CS50.

	 How could one of your project's features be misused? Are there any types of users who might have difficulty using your project? If your project becomes widely adopted, are there social concerns you might anticipate? 	
Lessons Learned:	In their module feedback surveys, students responded most favorably about the following: the interactive nature of the module (working in groups on the whiteboards), the concept of direct and indirect stakeholders, and thinking about the impact on stakeholders as the project scales up. Preparing the whiteboards for students to work on proved to be time-intensive, but students were highly engaged in the activity. It was most satisfying to see them apply what they learned during the activity to their own final projects.	About this module, one student wrote the following in their survey response: "I found it interesting that new software must be thought about in regards to the direct and indirect stakeholderseven something as simple as an emoji needs to be thought about in regards to how it affects others." Another reported that, "The ideas about scale were definitely interesting since some things only become real issues at larger scales."

4

<u>Week 0 Mini-Module</u> Repository Entry Template Embedded EthiCS @ Harvard Teaching Lab

	Overview	
Course:	CS 50: Introduction to Computer Science	
Mini-Module Topic:	Ethics as the Fourth Axis of Good Code	
Mini-Module	William Cochran	
Author:	Spring 2022 Week 0	
Tags:	Design [CS], Recommender system [CS], value [phil]	
C C		
Connection to	At the beginning of CS50, students are taught three	Prompting students to think about
Course Material:	axes of good code: Correctness, Design, and Style.	the ethics of their work on the
	This mini-module adds a fourth axis, Ethics. Each axis	very first class session hopefully
	comes with a question: (1) Correctness: does my code	establishes a practice of thinking
	do what it's supposed to do? (2) Design: how well	about the ethics of their work all
	(qualitatively) is my code implemented? (3) Style: is	through the semester. Over time,
	my code readable/pretty/ <i>etc.</i> ? (4) Ethics: what are	with more mini-modules in future
	the ethical implications of my code? When coding (or	class sessions, hopefully students
	learning to code), often the question coders ask	will develop an intellectual habit of
	themselves is "can I do this?" The fourth axis prompts	thinking about such questions
	them to reflect on whether they should. After a brief	even beyond their time in the
	introduction to Embedded EthiCS-what it is and why	course.
	it's necessary—the mini-module prompts students to	
	begin thinking about this large-scale question	
	("should I do this?") by asking smaller-scale questions	
	about the ethics of a hypothetical scenario tied to the	
	technical content from this first week.	

	Goals
Goals:	1. Introduce students to Embedded EthiCS—what it is and why it is necessary
	 Prompt students to begin thinking about the
	ethical implications of their work.

			Materials		
Assigned Readings:	•	None			

	Implementation
Agenda:	1. Ethics as the fourth axis of good code.
	2. Why Embed EthiCS?
	3. Small group activity
	4. Whole class debrief
Activity:	Hypothetical: "Say we're asked to implement a
	contacts application, as we've seen before in lecture.
	But we've also been asked to create a feature that
	recommends the users we call most frequently at
	certain times of the day: what are some questions
	we could ask about our code to determine if we
	should do this?"
	In small groups with the people at your table, take
	about 5 minutes to think of some questions that you
	could ask about your code to determine whether you
	should create such a feature.

<u>Week 2 Mini-Module</u> Repository Entry Template Embedded EthiCS @ Harvard Teaching Lab

	Overview
Course:	CS 50: Introduction to Computer Science
Mini-Module Topic:	Trustworthy Computing
Mini-Module Author:	William Cochran
Semesters Taught:	Spring 2022, Week 2
Tags:	Compilers [CS], Hacking [CS] Trust [Phil], Trustworthiness [Phil]
Connection to	By this point in the semester, students have learned
Course Material:	some of the basics of coding, including: writing code
	in a programming language, importing libraries, and
	running compilers. This module prompts students to
	reflect on the social aspects of even this work. First,
	students are shown how an undetectable Irojan
	upwittingly added to their own code. How can they
	ensure that the code they rely on is reliable? They
	discuss possible responses, such as updating the
	criminal code and/ or creating social stigma around
	these practices. Finally, they undergo an activity
	designed to develop trustworthiness.

Goals Goals: 1. Prompt students to reflect on the social aspects of writing code. 2. Practice developing trustworthiness.

Assigned • None Readings:	The inspiration for this mini-module comes from Ken Thompson's "Reflections on Trusting Trust" ACM Turning Award Lecture (1984). It is short and relatively accessible, so it could work well as a pre-reading for students.

Agenda:	Implementation 1. Crowdsource examples of places in their code when they rely on the outputs of other people	
	 (e.g., libraries, compilers). 2. Run through an example of how undetectable malicious code (e.g., a Trojan horse) could be unwittingly inserted into one's own code. 3. Discuss different possibilities for addressing this problem. 4. "Blind Snake" Trust-building exercise. 5. Debrief 	
Activity:	"Blind Snake" Trust Exercise.	This is a relatively common team-building activity, and many
	Requires 5-6 volunteers. Must be willing to stand in a line, front to back, with others, arm's length apart.	examples and different iterations can be found on the web. Students in the line must rely on each other
	Have volunteers line up at a certain point in the room. The group's goal is to maneuver their way together to another point in the room (such as to another table, out of the classroom door, <i>etc.</i>) <i>The catch</i> : the group can only communicate by tapping the person ahead of them on the shoulder	to achieve their goal. Each must give reliable directions (outputs) to the person in front of them in line and rely on the instructions (inputs) they receive from the person behind them. The activity dramatizes the kind of trust and
	 Tap the left shoulder to turn the person left, tap the right shoulder to turn the person right Tap on both shoulders to go forward. Everyone, except the person in the back, must keep your eyes closed the entire time. 	trustworthiness that goes into writing good code.

Set a timer for 60 seconds and see how far they get.

<u>Week 5 Mini-Module</u> Repository Entry Template Embedded EthiCS @ Harvard Teaching Lab

	Overview			
Course:	CS 50: Introduction to Computer Science			
	·			
Mini-Module Topic:	Factoring Ethics into Technical Trade-offs			
Mini-Module Author:	William Cochran			
Semesters Taught:	Spring 2022, Week 5			
Tags:	data structures [CS], privacy [phil], accessibility [phil], decision-making [phil], trade-offs			
-	[both]			
Connection to	At this point in the course students learn about			
Course Material:	different data structures. This week's class presents			
	students with a hypothetical scenario where they			
	have to choose the best data structure for a specific			
	task. First students work through the technical			
	trade-offs involved. Then, for their ethics			
	mini-module, students consider the ethical			
	implications of their choice and deliberate about			
	whether to change their decision, and why.			

Goals					
Goals:	 Prime students to see that ethical considerations can factor into technical trade-offs. Give students practice discussing how ethical considerations impact decisions about technical choices. 				

			Ma	aterials			
Assigned Readings:	•	None					

Agenda:	1. lı b	ntroduce hypothetical scenario [see Activity pelow]	Steps 1-2 are par class time. The n
	2. ⊦	Have students think through the technical	at step 3.
	t S	rade-offs involved in using different data tructures (linked lists vs. tries) for designing a	Generally speaki
	S	pecific app.	faster to implem
	3. S	hort preamble on privacy and accessibility.	app run slower.
	4. S	small group discussion: (1) How do you think the	take longer to in
	(2) How do you think the decision to use linked	result in a faster
	li	ists vs. tries impacts users' <i>access</i> to this piece	
	0	of technology?	
	5. C	Debrief and discuss: did your ethical analysis	
	C	change your original decision about which data	
	v	vhy not?	
Activity:	Imagi	ine you work for a company that has created a	Generally speaki
	perso	onal digital assistant that runs on a mobile	worse for privacy
	devic	e's OS. Customer reports lead you think that:	store the whole
	1	. The assistant often doesn't recognize its	separate svllable
		wake word, especially when users have	to identify indivi
		accents.	
	2	 It is easily activated by accident, potentially putting clients in embarrassing situations. 	However, since t develop, delayin
	The fa	astest way to solve the issue is to program the	implement a solu
	devic	e to record short segments of users' speech and	to experience di
	then	hire reviewers to analyze what triggers the	app.
	syster	m's errors.	
	Your t	task: develop the best storage system to solve	
	this p	problem.	
	Note	- "best" in this case can be understood along	
	Seven		
	Techn	nical axes:	
	1	. Time to run (how fast the app runs)	
	2	 I me to develop (how long it takes to implement the solution) 	
	E .1.1		
	Ethica 1	al axes:	
	2	Accessibility	
	2		

Steps 1-2 are part of the regular class time. The mini-module begins at step 3.

Generally speaking, linked lists are faster to implement, but make the app run slower. Tries, by contrast, take longer to implement, but result in a faster-running app.

Generally speaking, linked lists are worse for privacy because they store the whole phrase. Tries, by contrast, segment user speech into separate syllables, making it harder to identify individual users' speech.

However, since tries take longer to develop, delaying the time to implement a solution means that people with accents will continue to experience difficulty using the app.

	Overview				
Course:	CS 50: Introduction to Computer Science				
Mini-Module Topic:	Ethical Design Principles				
Mini-Module Author:	William Cochran				
Semesters Taught:	Spring 2022, Week 7				
Tags:	Databases [CS], Design [CS], Design principle [CS], Ethical design principles [phil], Facial Recognition Software [CS], Justice [Phil]				
Connection to Course Material:	By this point in the course, students have seen how databases ideally conform to certain technical design principles, such as 'minimize redundancies' (to increase efficiency), and 'permit adaptability' (to make it easier to add new data). But reflecting on how databases are used 'in the wild' can lead us to think of other design principles that databases should adhere to as well. The case described in "Wrongfully Accused by an Algorithm" (NYT) exemplifies how design decisions about databases can have profound impacts on real people. Students read excerpts from the case and work together in small groups to draft an ethical design principle that would have prevented what happened in this case.				

	Goals
Goals:	 Raise awareness about the real world repercussions of poor database design. Prompt students to practice thinking about ethical design principles.

Assigned ● None Readings:	The case for this mini-module comes from "Wrongfully Accused By an Algorithm" (NYT), by Kashmir Hill. It would make for a good pre-reading assignment. Due to time constraints, students iln this mini-module, read excerpts.

Agenda:	 Introduce students to the case of Mr. Williams described in "Wrongfully Accused by an Algorithm" (NYT)
	 Small group activity: students develop an ethical design principle based on their reading of the case.
	3. Debrief and discuss with the whole class.
Activity:	Now that you have read the excerpts from "Wrongfully Accused by an Algorithm," work with the students at your table to create a design principle that would have avoided the issues that poor database design created in this case. Your principle should be of the following form: When designing databases, data practitioners should strive to create databases that , in order to
	Once you've come up with your principle, write it on your table's Google slide. Be prepared to share your group's work, too.