Repository Entry Embedded EthiCS @ Harvard Teaching Lab

Overview			
Course: Course Level:	CS 222: Algorithms at the End of the Wire Graduate		
Course Description:	"Covers topics related to algorithms for big data, especially related to networks and database systems. Themes include sketch-based data structures, compression, graph and link information, and information theory. Requires a major final research-based project." ¹		
Module Topic: Module Author: Semesters Taught: Tags:	Fair Queuing Samuel Dishaw Fall 2020 Fair queuing [CS], optimization [CS], fairness [phil], aggregation [phil]		
Module Overview:	The module discusses issues of fairness as they arise in the context of allocating resources through queues. Two kinds of queues are distinguished: queues for non-exhaustible goods (e.g. server throughput) and queues for exhaustible goods (e.g. ICU beds). The module introduces the notion of pairwise comparison between outcomes as a way of determining whether a distribution of burdens or of benefits is fair.		
Connection to Course Material:	A week prior to the module students were introduced to algorithms for scheduling policies, and reflected on ways to optimize (i.e. minimize) average waiting time in a queue by using predictions about job length for jobs in the queue. The module thus discusses an ethical desideratum within a design problem that students were already familiar with.	One reason for choosing this topic is that there exists a body of literature in computer science dedicated to the topic of fairness in queues, some of which briefly considers philosophical work on fairness. The topic is thus a natural place to explore philosophical considerations of fairness currently being considered in that literature. Another reason is that the topic is of broad ethical significance, given the many different uses of queues as a resource-allocation mechanism.	

Goals

 Module Goals:
 1. Distinguish two kinds of queues and what issues each kind of queue raises with respect to fairness.

¹ <u>https://canvas.harvard.edu/courses/74186/assignments/syllabus</u>

	 Introduce a framework for thinking about fairness, i.e. pairwise comparison of outcomes. Apply this framework to the question of fair queues for non-exhaustible goods. Compare the merits of queues and lotteries in the context of the allocation of exhaustible goods 	
Key Philosophical Questions:	 What is a queue? What are the harms of waiting? What is fairness? Should we always maximize the good? What is the fairest way of distributing the burden of waiting? Are lotteries fairer than queues? 	Questions 2 and 5 pertain in particular to queues for non- exhaustible goods. Question 6 was discussed in relation to queues for exhaustible goods.

Materials		
Key Philosophical •	Exhaustible vs. non-exhaustible goods	The distinction between queues for
Concepts: •	Fairness vs. moral aggregation	exhaustible and non-exhaustible
•	Pairwise Comparison	goods is important because each
•	Lotteries as allocation mechanisms	raises different issues with respect
•	Fair chances	to fairness. In the case of queues
		for exhaustible goods (e.g. ICU
		beds), the primary issue is securing
		fair access, or fair opportunities of
		access, to some good that not all
		can have. In the case of queues for
		non-exhaustible goods (e.g.
		boarding a plane), the primary
		issue is distributing the burden of
		waiting in a way that is fair.
		The distinction between fairness
		and doing the most good, as well
		as the method of pairwise
		comparison, is illustrated by way of
		a discussion of T.M. Scanlon's
		argument against moral
		aggregation in What We Owe to
		Each Other. The notion of 'Pairwise
		comparison' (from Nagel 1979:
		chapter 8) is another name for
		what Scanlon calls the 'individualist
		restriction on moral justification.
Assigned •	Avi-Itzhak, B. et. al. (2008). Quantifying Fairness	This paper provides a useful
Readings:	in Queuing Systems: Principles, Approaches and	overview of the fair queuing
	Applicability. Probability in the engineering and	literature in computer science, and
	informational sciences 22 (4), 495-517.	does an especially good job
		motivating some different but
		incompatible principles of fair

queuing (namely: first-in-first-out and shortest-job-first).

	Implementation	
Class Agenda:	 Distinguish two kinds of queues 	Although we covered all of these
	2. Summarize the problem of fair queuing in the	items on the agenda, it would have
	computer science literature	been nice to spend more time on
	3. Introduce a philosophical concept on fairness by	the fifth item, since it raises ethical
	way of Scanlon's World Cup example and the	questions at a different and more
	notion of pairwise comparison	fundamental level (whether
	4. Apply the philosophical tool of pairwise	queues are a fair mechanism at all).
	comparison to a specific queuing problem (call	avample ato up a surprising
	times)	example ate up a surprising
	5 Discuss the relative merits of lotteries and	anount of time.
	augues for exhaustible goods using two	
	examples from bioethics (vaccine distribution	
	and ICU beds)	
	,	
Sample Class	In the module's main activity, students were	Although the students took to
Activity:	presented with a specific queuing problem. A single	using the notion of pairwise
	queue in a call-center has nine short jobs (five	comparison, they all used it in a
	to process) As it stands, the longer job is at the head	shortest job first principle. This is
	of the queue. How much time this longer job is at the near	hecause students used nairwise
	already waited was a variable in this problem.	comparison of <i>marginal</i> burdens
	Students were then asked whether it would be fair	(i.e. how much <i>longer</i> one would
	to re-order the queue—in particular whether it	have to wait, relative to the status
	mattered how much time the longer job had already	quo). Using that notion means that
	waited—and encouraged to use the pairwise	even if the long job has already
	comparison metric to answer this question. After	waited an hour to be served, the
	students worked in small groups, they reconvened	next shortest job in line should still
	to discuss their answers with the rest of the class.	be bumped anead of them,
		will only be made to wait five more
		minutes whereas the second will
		otherwise have to wait thirty more
		minutes. But this isn't the only way
		to apply the notion of pairwise
		comparison to the case. We can
		instead compare the total waiting
		time of each job. This way of using
		the metric results in effect in a
		maximin principle, where the
		fairest distribution of waiting time
		is the one on which the waiting
		time of whoever is made to wait
		the most is the shortest. One
		nerbans not as salight was the
		formulation of the prompt which
		iormalation of the prompt, which

		asked students what way of <i>re-ordering</i> the queue would be fair. This prompt invites thinking in terms of marginal burdens. A better way of framing the problem might be to ask students directly what queuing algorithm should be operative if everyone in this particular queue is to be treated fairly.
Module Assignment:	Discussion board prompt: The authors of the paper discuss two scheduling policies: First-In-First-Out and Shortest-Job-First. Which do you think is more fair and why?	This question was posted on the online course website three days ahead of the module. Most students answered the prompt before the class but discussion continued on the course website after class as well.
Lessons Learned:	Scanlon's anti-aggregation argument is a good pedagogical tool to get students thinking and talking about constraints on maximizing the good and more generally about the difference between doing the most good and fairness.	Partly because the World Cup example generates so much student engagement, the discussion can also go in less fruitful directions (e.g. a debate about how much pleasure people derive from watching sports). In the original text, Scanlon asks two questions: whether we should rescue Smith or wait until the match is over, and whether the right thing to do depends on how many people are watching. To get the most out of the example, it may be best to highlight the second question and make it the focal point of discussion.